Radio Frequency Identification (RFID) is the wireless non-contact use of radio frequency waves to transfer data. Tagging items with RFID tags allows users to automatically and uniquely identify and track inventory and assets. RFID takes auto-ID technology to the next level by allowing tags to be read without line of sight and, depending on the type of RFID, having a read range between a few centimeters to over 20+ meters.
RFID has come a long way from its first application of identifying airplanes as friend or foe in World War II. Not only does the technology continue to improve year over year, but the cost of implementing and using an RFID system continues to decrease, making RFID more cost-effective and efficient.
Within the Electromagnetic Spectrum, there are three primary frequency ranges used for RFID transmissions – Low Frequency, High Frequency, and Ultra-High Frequency.
Low Frequency
There are two types of RFID that reside within the Ultra High Frequency range: Active RFID and Passive RFID.
Active RFID
Primary Frequency Range: 433 MHz, (Can use 2.45 GHz - under the Extremely High Frequency Range)
Read Range: 30 - 100+ Meters
Average Cost Per Tag: $25.00 - $50.00
Applications: Vehicle Tracking, Auto Manufacturing, Mining, Construction, Asset Tracking
Pros: Very Long Read Range, Lower Infrastructure Cost (vs. Passive RFID), Large Memory Capacity, High Data Transmission Rates
Cons: High Per Tag Cost, Shipping Restrictions (due to batteries), Complex Software may be Required, High Interference from Metal and Liquids; Few Global Standards
Passive RFID
Primary Frequency Ranges: 860 - 960 MHz
Read Range: Near Contact - 25 Meters
Average Cost Per Tag: $0.09 - $20.00
Applications: Supply Chain Tracking, Manufacturing, Pharmaceuticals, Electronic Tolling, Inventory Tracking, Race Timing, Asset Tracking
Pros: Long Read Range, Low Cost Per Tag, Wide Variety of Tag Sizes and Shapes, Global Standards, High Data Transmission Rates
Cons: High Equipment Costs, Moderate Memory Capacity, High Interference from Metal and Liquids
Primary Subsets of Passive RFID
The relatively wide range of 860 - 960 MHz is recognized as the ‘Global Standard’ for UHF Passive RFID; however, its late adoption led to the range being further divided into two primarily subsets – 865 – 868 MHz and 902 - 928 MHz.
865 - 868 MHz - ETSI
The European Telecommunications Standards Institute (ETSI) is the governing body in Europe that sets and upholds country-wide standards for communicating via multiple channels, including Radio Waves. By ETSI’s regulations, RFID equipment and tags are only allowed to communicate on the smaller frequency range of 865 - 868 MHz because other types of radio communications are allocated to subsets of the larger range of 860 - 960 MHz.
Because ETSI sets the standards for Europe, but when purchasing tags and equipment, the standard can be called either ETSI or EU denoting Europe.
902 - 928 MHz - FCC
The Federal Communications Commission (FCC) is the governing body in the United States that sets and upholds country-wide standards for communicating via multiple channels including Radio Waves. The FCC regulations state that RFID tags and equipment can only operate between 902 - 928 MHz, because, like Europe, other communication types are allocated to the remaining portions of the larger range of 860 - 960 MHz.
RFID Equipment or Tags that are FCC certified or on the North American Frequency Range, or NA, can be used throughout North America.
Other
Because both ETSI and FCC were the first major standards to be approved, many countries either adopted one or the other, or created their own standards* within a subset of either frequency range. For example, Argentina chose to adopt the FCC range of 902 – 928 MHz, while Armenia chose to implement its own, smaller band of 865.6 – 867.6 MHz within the ETSI range.
Although regional regulations like FCC and ETSI are typically discussed using frequency ranges, there are other specifics that each country regulates such as the amount of radiated power (ERP or EIRP). Certain countries are stricter and regulate where RFID can be used, the amount of frequency “hopping” that must be used, or that a license is required to use RFID. For more information on each country’s regulations – read “ How to Conform to Regional Regulations when using RFID”.
Examples of applications that benefit from RFID are endless. Applications extend from broad areas like inventory tracking to supply chain management and can become more specialized depending on the company or industry. Types of RFID applications can span from IT asset tracking to textile tracking and even into specifics like rental item tracking.
What sets a potential RFID application apart from applications that can use other types of systems is the need to uniquely identify individual items quickly and more efficiently where traditional systems fall short. Below are a few applications that are successfully using RFID technology.
RFID has come a long way from its first application of identifying airplanes as friend or foe in World War II. Not only does the technology continue to improve year over year, but the cost of implementing and using an RFID system continues to decrease, making RFID more cost-effective and efficient.
Types of RFID
Within the Electromagnetic Spectrum, there are three primary frequency ranges used for RFID transmissions – Low Frequency, High Frequency, and Ultra-High Frequency.
- General Frequency Range: 30 - 300 kHz
- Primary Frequency Range: 125 - 134 kHz
- Read Range: Contact - 10 Centimeters
- Average Cost Per Tag: $0.75 - $5.00
- Applications: Animal Tracking, Access Control, Car Key-Fob, Applications with High Volumes of Liquids and Metals
- Pros: Works well near Liquids & Metals, Global Standards
- Cons: Very Short Read Range, Limited Quantity of Memory, Low Data Transmission Rate, High Production Cost
High Frequency
- Primary Frequency Range: 13.56 MHz
- Read Range: Near Contact - 30 Centimeters
- Average Cost Per Tag: $0.20 - $10.00
- Applications: DVD Kiosks, Library Books, Personal ID Cards, Poker/Gaming Chips, NFC Applications
- Pros: NFC Global Protocols, Larger Memory Options, Global Standards
- Cons: Short Read Range, Low Data Transmission Rate
Ultra High Frequency
- General Frequency Range: 300 - 3000 MHz
- Primary Frequency Ranges: 433 MHz, 860 - 960 MHz
There are two types of RFID that reside within the Ultra High Frequency range: Active RFID and Passive RFID.
Active RFID
Primary Frequency Range: 433 MHz, (Can use 2.45 GHz - under the Extremely High Frequency Range)
Read Range: 30 - 100+ Meters
Average Cost Per Tag: $25.00 - $50.00
Applications: Vehicle Tracking, Auto Manufacturing, Mining, Construction, Asset Tracking
Pros: Very Long Read Range, Lower Infrastructure Cost (vs. Passive RFID), Large Memory Capacity, High Data Transmission Rates
Cons: High Per Tag Cost, Shipping Restrictions (due to batteries), Complex Software may be Required, High Interference from Metal and Liquids; Few Global Standards
Passive RFID
Primary Frequency Ranges: 860 - 960 MHz
Read Range: Near Contact - 25 Meters
Average Cost Per Tag: $0.09 - $20.00
Applications: Supply Chain Tracking, Manufacturing, Pharmaceuticals, Electronic Tolling, Inventory Tracking, Race Timing, Asset Tracking
Pros: Long Read Range, Low Cost Per Tag, Wide Variety of Tag Sizes and Shapes, Global Standards, High Data Transmission Rates
Cons: High Equipment Costs, Moderate Memory Capacity, High Interference from Metal and Liquids
Primary Subsets of Passive RFID
The relatively wide range of 860 - 960 MHz is recognized as the ‘Global Standard’ for UHF Passive RFID; however, its late adoption led to the range being further divided into two primarily subsets – 865 – 868 MHz and 902 - 928 MHz.
865 - 868 MHz - ETSI
The European Telecommunications Standards Institute (ETSI) is the governing body in Europe that sets and upholds country-wide standards for communicating via multiple channels, including Radio Waves. By ETSI’s regulations, RFID equipment and tags are only allowed to communicate on the smaller frequency range of 865 - 868 MHz because other types of radio communications are allocated to subsets of the larger range of 860 - 960 MHz.
Because ETSI sets the standards for Europe, but when purchasing tags and equipment, the standard can be called either ETSI or EU denoting Europe.
902 - 928 MHz - FCC
The Federal Communications Commission (FCC) is the governing body in the United States that sets and upholds country-wide standards for communicating via multiple channels including Radio Waves. The FCC regulations state that RFID tags and equipment can only operate between 902 - 928 MHz, because, like Europe, other communication types are allocated to the remaining portions of the larger range of 860 - 960 MHz.
RFID Equipment or Tags that are FCC certified or on the North American Frequency Range, or NA, can be used throughout North America.
Other
Because both ETSI and FCC were the first major standards to be approved, many countries either adopted one or the other, or created their own standards* within a subset of either frequency range. For example, Argentina chose to adopt the FCC range of 902 – 928 MHz, while Armenia chose to implement its own, smaller band of 865.6 – 867.6 MHz within the ETSI range.
Although regional regulations like FCC and ETSI are typically discussed using frequency ranges, there are other specifics that each country regulates such as the amount of radiated power (ERP or EIRP). Certain countries are stricter and regulate where RFID can be used, the amount of frequency “hopping” that must be used, or that a license is required to use RFID. For more information on each country’s regulations – read “ How to Conform to Regional Regulations when using RFID”.
Examples of applications that benefit from RFID are endless. Applications extend from broad areas like inventory tracking to supply chain management and can become more specialized depending on the company or industry. Types of RFID applications can span from IT asset tracking to textile tracking and even into specifics like rental item tracking.
What sets a potential RFID application apart from applications that can use other types of systems is the need to uniquely identify individual items quickly and more efficiently where traditional systems fall short. Below are a few applications that are successfully using RFID technology.
- Race Timing
- Supply Chain Management
- Pharmaceutical Tracking
- Inventory Tracking
- IT Asset Tracking
- Laundry & Textile Tracking
- File Tracking
- Returnable Transit Item (RTI) Tracking
- Event & Attendee Tracking
- Access Control
- Vehicle Tracking
- Tolling
- Hospital Infant Tracking
- Animal Tracking
- Tool Tracking
- Jewelry Tracking
- Retail Inventory Tracking
- Pipe and Spool Tracking
- Logistics Tracking (Materials Management)
- DVD Kiosks
- Library Materials Tracking
- Marketing Campaigns
- Real-Time Location Systems